1091.8 (4) Å³

 $K\alpha$ radiation 1.16 mm⁻

 \times 0.15 \times 0.10 mm

10382 measured reflections

2469 independent reflections

2158 reflections with $I > 2\sigma(I)$

2

293 K

 $R_{\rm int} = 0.037$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis[μ_2 -1,4-bis(1*H*-imidazol-1-yl)butane1dichloridonickel(II)1

Jia Zhang and Jiang-Feng Song*

Department of Chemistry, College of Science, North University of China, Taiyuan Shanxi 030051, People's Republic of China Correspondence e-mail: jfsong0129@gmail.com

Received 12 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.089; data-to-parameter ratio = 17.4.

The asymmetric unit of the title compound, $[NiCl_2(C_{10}H_{14}N_4)_2]_n$, consists of one Ni²⁺ ion which is located on an inversion center, one 1,4-bis(imidazol-1-yl)butane (bimb) and one chloride ion. The Ni²⁺ ion exhibits a distorted octahedral coordination environment defined by four N atoms from four bimb ligands in the equatorial plane and two chloride ions in axial positions. The bridging coordination mode of the bimb ligands leads to the formation of interpenetrating square Ni₄(bimb)₄ units that are arranged parallel to (001). The separation between the Ni atoms in these units is 13.740 (3) Å.

Related literature

For related structures based on bis(imidazole)alkane ligands, see: Ballester et al. (1998); Li et al. (2004); Zhu et al. (2006, 2009).

Experimental

Crystal data

	17
$[N_1C_1(C_{10}H_{14}N_4)_2]$	V =
$M_r = 510.11$	Z =
Monoclinic, $P2_1/n$	Mo
$a = 7.4572 (15) \text{\AA}$	$\mu =$
b = 18.297 (4) Å	T =
c = 8.7321 (17) Å	0.20
$\beta = 113.60 \ (3)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.801, \ T_{\max} = 0.893$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	142 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
2469 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected bond lengths (Å).

Ni1-N4 ⁱ	2.0980 (19)	Ni1-Cl1	2.5270 (8)
Ni1-N1	2.111 (2)		

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Young Scholars Foundation of North University of China and the Scientific Research Start-up Foundation of North University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2543)

References

- Ballester, L., Baxter, I., Duncan, P. C. M., Goodgame, D. M. L., Grachvogel, D. A. & Williams, D. J. (1998). Polyhedron, 17, 3613-3623.
- Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, B., Zhu, X., Zhou, J. H., Peng, Y. F. & Zhang, Y. (2004). Polyhedron, 23, 3133-3141.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Zhu, X., Ge, H. Y., Zhang, Y. M., Li, B. L. & Zhang, Y. (2006). Polyhedron, 25, 1875-1883
- Zhu, X., Guo, Y. & Zou, Y.-L. (2009). Acta Cryst. E65, m1506.

supplementary materials

Acta Cryst. (2011). E67, m1633 [doi:10.1107/S1600536811044448]

Poly[bis[μ_2 -1,4-bis(1*H*-imidazol-1-yl)butane]dichloridonickel(II)]

J. Zhang and J.-F. Song

Comment

A large number of novel topologies constructed from bis(pyridine)alkane, triazolealkane or bis(imidazole)alkane ligands have been reported in recent years, for example, $[Co(bte)_2(NCS)_2]_n$, $\{[Cd(bte)_2(H_2O)_2](NO_3)_2\}_n$, or $[Cd(bimb)_2(NCO)_2]_n$ [bte=1,2-Bis (1,2,4-triazol-1-yl) ethane, bimb=1,4-bis (imidazol-1-yl) butane] (Ballester *et al.*, 1998; Li *et al.*, 2004; Zhu *et al.*, 2006; Zhu *et al.*, 2009). These ligands show flexible bridging modes and can adopt different conformations (Li *et al.*, 2004). Herein, a new coordination polymer based on 1,4-bis(imidazol-1-yl)-butane, [Ni(bimb)_2Cl_2]_n, is reported.

The asymmetric unit of the title compound consists of one Ni^{2+} ion which is located on an inversion center, one bimb ligand and one chloride ion. The Ni^{2+} ion exhibits a distorted octahedral coordination environment defined by four N atoms from four bimp ligands in the equatorial plane [Ni1—N4 = 2.0980 (19) Å; Ni1—N1 = 2.111 (2) Å] and two chloride ions in axial positions [Ni1—Cl1 = 2.5270 (8) Å]. The dihedral angle between the imidazole rings in the bimp ligand is 60.99 (16)°.

Each bimb ligand connects two adjacent Ni^{2+} ions to form interpenetrating two-dimensional networks containing square $Ni_4(bimb)_4$ units parallel to (001) (Figure 2). The square $Ni_4(bimb)_4$ units are constructed from four Ni^{2+} ions which are situated in the four corners and four bimb ligands which are in the edge positions. The Ni \cdots Ni distance in the net is 13.740 (3) Å.

Experimental

A solution of ethyl 2,2-difluoro-2-(pyridin-2-yl)acetate (10.0 mg, 0.05 mmol) in 2 ml ethanol was directly mixed with a solution of NiCl₂ in 1 ml water (0.10 mol dm⁻³) at room temperature in a 15 ml beaker. A solution of bimb (9.5 mg, 0.05 mmol) in 3 ml e thanol in another 15 ml beaker was added the above-mentioned mixture. Then 2*M* HCl was added until the pH value of mixture arrives at 4.5. The resulted mixture was transferred and sealed in a 25 ml Teflon-lined stainless steel reactor, and heated at 85 °C for 72 h. Upon cooling to room temperature, the light green crystals were filtered and washed with water and ethanol.

Refinement

All H atoms were located in a difference Fourier map refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The coordination environment of Ni(II) atom with displacement ellipsoids at the 50% probability level. H atome were omitted for clarity. [Symmetry codes: i) 1.5-x, 0.5+y, 0.5-z; ii) 1.5+x, 0.5+y, 0.5+z; iii) 3-x, 1-y, 1-z]

Fig. 2. View of a two-dimensional layer containing square Ni₄(bimb)₄ units with dimension of 13.740 (3) × 13.740 (3) Å² parallel to (001).

$Poly[bis[\mu_2-1,4-bis(1H-imidazol-1-yl)butane]dichloridonickel(II)]$

Crystal data	
$[NiCl_2(C_{10}H_{14}N_4)_2]$	F(000) = 532
$M_r = 510.11$	$D_{\rm x} = 1.552 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2469 reflections
<i>a</i> = 7.4572 (15) Å	$\theta = 3.1 - 27.5^{\circ}$
<i>b</i> = 18.297 (4) Å	$\mu = 1.16 \text{ mm}^{-1}$
c = 8.7321 (17) Å	<i>T</i> = 293 K
$\beta = 113.60 \ (3)^{\circ}$	Block, green
$V = 1091.8 (4) \text{ Å}^3$	$0.20\times0.15\times0.10\ mm$
Z = 2	

Data collection

Bruker SMART APEX CCD diffractometer	2469 independent reflections
Radiation source: fine-focus sealed tube	2158 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.037$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -9 \rightarrow 9$
$T_{\min} = 0.801, \ T_{\max} = 0.893$	$k = -23 \rightarrow 23$
10382 measured reflections	$l = -10 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.089$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0274P)^{2} + 1.1307P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2469 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
142 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or	• equivalent	t isotropic disp	placement parameters	$(A^2$	ć)
----------------------------------	----------------	--------------	------------------	----------------------	--------	----

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N4	0.1415 (3)	0.10177 (10)	0.0471 (3)	0.0289 (4)
C9	0.0664 (4)	0.16648 (14)	0.0733 (4)	0.0440 (7)
Н9	-0.0615	0.1733	0.0630	0.053*
C10	0.2054 (4)	0.21922 (14)	0.1165 (4)	0.0456 (7)
H10	0.1917	0.2678	0.1415	0.055*
C8	0.3245 (3)	0.11623 (13)	0.0740 (3)	0.0298 (5)
H8	0.4118	0.0819	0.0650	0.036*
N3	0.3700 (3)	0.18646 (11)	0.1160 (3)	0.0335 (5)
C7	0.5640 (4)	0.21996 (15)	0.1668 (4)	0.0457 (7)
H7A	0.6545	0.1835	0.1592	0.055*
H7B	0.6092	0.2347	0.2829	0.055*
C6	0.5694 (4)	0.28506 (14)	0.0646 (3)	0.0383 (6)
H6A	0.4725	0.3204	0.0647	0.046*
H6B	0.5361	0.2699	-0.0500	0.046*
Ni1	1.5000	0.5000	0.5000	0.02315 (12)
Cl1	1.30895 (8)	0.46277 (3)	0.66987 (8)	0.03495 (16)
N1	1.2760 (3)	0.45639 (10)	0.2843 (2)	0.0269 (4)
N2	0.9912 (3)	0.41380 (11)	0.1097 (3)	0.0323 (4)

supplementary materials

C3	1.0969 (3)	0.43850 (14)	0.2651 (3)	0.0329 (5)
H3	1.0496	0.4425	0.3485	0.039*
C1	1.2840 (4)	0.44240 (13)	0.1329 (3)	0.0320 (5)
H1	1.3929	0.4500	0.1083	0.038*
C2	1.1099 (4)	0.41598 (13)	0.0245 (3)	0.0355 (5)
H2	1.0776	0.4021	-0.0859	0.043*
C5	0.7692 (4)	0.32062 (14)	0.1322 (4)	0.0414 (6)
H5A	0.8052	0.3315	0.2495	0.050*
H5B	0.8631	0.2855	0.1253	0.050*
C4	0.7874 (4)	0.38856 (16)	0.0476 (4)	0.0481 (7)
H4A	0.7393	0.3799	-0.0717	0.058*
H4B	0.7072	0.4264	0.0661	0.058*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N4	0.0205 (10)	0.0275 (10)	0.0382 (11)	0.0007 (7)	0.0113 (9)	0.0027 (8)
C9	0.0290 (13)	0.0301 (13)	0.079 (2)	0.0015 (10)	0.0275 (14)	0.0015 (13)
C10	0.0374 (15)	0.0263 (12)	0.080 (2)	-0.0011 (10)	0.0303 (15)	-0.0013 (13)
C8	0.0236 (12)	0.0295 (11)	0.0370 (13)	0.0006 (9)	0.0128 (10)	0.0031 (9)
N3	0.0224 (10)	0.0295 (10)	0.0472 (12)	-0.0034 (8)	0.0126 (9)	0.0058 (9)
C7	0.0240 (13)	0.0422 (15)	0.0624 (18)	-0.0085 (11)	0.0085 (13)	0.0115 (13)
C6	0.0279 (13)	0.0359 (13)	0.0446 (14)	-0.0107 (10)	0.0078 (11)	0.0010 (11)
Ni1	0.01420 (19)	0.0230 (2)	0.0300 (2)	-0.00183 (14)	0.00640 (16)	-0.00287 (15)
Cl1	0.0247 (3)	0.0419 (3)	0.0393 (3)	-0.0057 (2)	0.0139 (3)	-0.0037 (2)
N1	0.0174 (9)	0.0279 (9)	0.0321 (10)	-0.0033 (7)	0.0066 (8)	-0.0038 (8)
N2	0.0238 (10)	0.0306 (10)	0.0337 (10)	-0.0097 (8)	0.0023 (9)	0.0023 (8)
C3	0.0225 (12)	0.0410 (13)	0.0327 (12)	-0.0079 (10)	0.0086 (10)	-0.0021 (10)
C1	0.0283 (13)	0.0310 (12)	0.0390 (13)	-0.0020 (9)	0.0157 (11)	-0.0035 (10)
C2	0.0390 (14)	0.0321 (12)	0.0305 (12)	-0.0053 (10)	0.0089 (11)	-0.0053 (10)
C5	0.0253 (13)	0.0344 (13)	0.0570 (17)	-0.0059 (10)	0.0086 (12)	0.0077 (12)
C4	0.0254 (13)	0.0481 (16)	0.0522 (16)	-0.0159 (11)	-0.0041 (12)	0.0121 (13)

Geometric parameters (Å, °)

1.316 (3)	Ni1—N1 ^{iv}	2.111 (2)
1.368 (3)	Ni1—N1	2.111 (2)
2.0980 (19)	Ni1—Cl1	2.5270 (8)
1.355 (4)	Ni1—Cl1 ^{iv}	2.5270 (8)
0.9300	N1—C3	1.319 (3)
1.368 (3)	N1—C1	1.371 (3)
0.9300	N2—C3	1.346 (3)
1.342 (3)	N2—C2	1.366 (3)
0.9300	N2—C4	1.469 (3)
1.467 (3)	С3—Н3	0.9300
1.499 (4)	C1—C2	1.353 (3)
0.9700	C1—H1	0.9300
0.9700	С2—Н2	0.9300
	1.316 (3) 1.368 (3) 2.0980 (19) 1.355 (4) 0.9300 1.368 (3) 0.9300 1.342 (3) 0.9300 1.467 (3) 1.499 (4) 0.9700 0.9700	1.316(3)Ni1—N1 $1.368(3)$ Ni1—N1 $2.0980(19)$ Ni1—Cl1 $1.355(4)$ Ni1—Cl1 $1.355(4)$ Ni1—Cl1 0.9300 N1—C3 $1.368(3)$ N1—C1 0.9300 N2—C3 $1.342(3)$ N2—C2 0.9300 N2—C4 $1.467(3)$ C3—H3 $1.499(4)$ C1—C2 0.9700 C1—H1 0.9700 C2—H2

C6—C5	1.512 (3)	C5—C4	1.480 (4)
C6—H6A	0.9700	C5—H5A	0.9700
С6—Н6В	0.9700	С5—Н5В	0.9700
Ni1—N4 ⁱⁱ	2.0980 (19)	C4—H4A	0.9700
Ni1—N4 ⁱⁱⁱ	2.0980 (19)	C4—H4B	0.9700
C8—N4—C9	105.1 (2)	N1 ^{iv} —Ni1—Cl1	90.51 (6)
C8—N4—Nil ⁱ	128.15 (16)	N1—Ni1—Cl1	89.49 (6)
C9—N4—Ni1 ⁱ	126.43 (16)	N4 ⁱⁱ —Ni1—Cl1 ^{iv}	89.81 (6)
C10—C9—N4	110.2 (2)	N4 ⁱⁱⁱ —Ni1—Cl1 ^{iv}	90.19 (6)
С10—С9—Н9	124.9	N1 ^{iv} —Ni1—Cl1 ^{iv}	89.49 (6)
N4—C9—H9	124.9	N1—Ni1—Cl1 ^{iv}	90.51 (6)
C9-C10-N3	105.9 (2)	Cl1—Ni1—Cl1 ^{iv}	180.0
С9—С10—Н10	127.0	C3—N1—C1	105.3 (2)
N3—C10—H10	127.0	C3—N1—Ni1	127.33 (17)
N4—C8—N3	111.9 (2)	C1—N1—Ni1	127.36 (15)
N4—C8—H8	124.1	C3—N2—C2	107.1 (2)
N3—C8—H8	124.1	C3—N2—C4	125.4 (2)
C8—N3—C10	106.9 (2)	C2—N2—C4	127.5 (2)
C8—N3—C7	126.4 (2)	N1—C3—N2	111.4 (2)
C10—N3—C7	126.4 (2)	N1—C3—H3	124.3
N3—C7—C6	114.2 (2)	N2—C3—H3	124.3
N3—C7—H7A	108.7	C2—C1—N1	110.0 (2)
С6—С7—Н7А	108.7	C2—C1—H1	125.0
N3—C7—H7B	108.7	N1—C1—H1	125.0
С6—С7—Н7В	108.7	C1—C2—N2	106.2 (2)
Н7А—С7—Н7В	107.6	C1—C2—H2	126.9
C7—C6—C5	111.5 (2)	N2—C2—H2	126.9
С7—С6—Н6А	109.3	C4—C5—C6	116.1 (2)
С5—С6—Н6А	109.3	C4—C5—H5A	108.3
С7—С6—Н6В	109.3	С6—С5—Н5А	108.3
С5—С6—Н6В	109.3	C4—C5—H5B	108.3
H6A—C6—H6B	108.0	С6—С5—Н5В	108.3
N4 ⁱⁱ —Ni1—N4 ⁱⁱⁱ	180.0	H5A—C5—H5B	107.4
N4 ⁱⁱ —Ni1—N1 ^{iv}	90.26 (8)	N2	111.6 (2)
N4 ⁱⁱⁱ —Ni1—N1 ^{iv}	89.74 (8)	N2—C4—H4A	109.3
N4 ⁱⁱ —Ni1—N1	89.74 (8)	C5—C4—H4A	109.3
N4 ⁱⁱⁱ —Ni1—N1	90.26 (8)	N2—C4—H4B	109.3
N1 ^{iv} —Ni1—N1	180.000 (1)	C5—C4—H4B	109.3
N4 ⁱⁱ —Ni1—Cl1	90.19 (6)	H4A—C4—H4B	108.0
N4 ⁱⁱⁱ —Ni1—Cl1	89.81 (6)		

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) x+3/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) -x+3, -y+1, -z+1.

Fig. 1

Fig. 2